|
【材料】志盛威华陶瓷高温隔热保温涂料的研究结果 |
【cailiao】2012-12-11发表: 志盛威华陶瓷高温隔热保温涂料的研究结果 斗转星移,时间长河在流淌,人类在发展进步,科学技术不断创新,新材料的应用,证明人类不断创造历史,用科学技术改变生活。早在1969年,美国太空总署提出以陶瓷隔热砖提供太空船的绝热保护后,就认为 志盛威华陶瓷高温隔热保温涂料的研究结果斗转星移,时间长河在流淌,人类在发展进步,科学技术不断创新,新材料的应用,证明人类不断创造历史,用科学技术改变生活。 早在1969年,美国太空总署提出以陶瓷隔热砖提供太空船的绝热保护后,就认为涂料绝热是可能的。美国太空总署发表的数据表明,厚9.5~31.8mm的陶瓷隔热砖中,真正发挥绝热作用的是陶瓷隔热砖上的0.25mm厚的陶瓷涂料外层,占绝热效果的95%,而陶瓷隔热砖的基层(泡沫体)只提供5%的绝热保护。为此1977年,美国成立了一家公司,专门致力于研究、开发和生产这种涂料。但其机理始终对外保密。1992年美国学者hunt,a.j.等在国际材料工程大会上提出了超级绝热材料的概念。与此概念相近的还有“高性能绝热材料”。在此之后很多学者陆续使用了超级绝热材料的概念超级绝热材料指在预定的使用条件下,其导热系数低于“无对流空气”导热系数的绝热材料。 一、陶瓷绝热隔热保温涂料的绝热机理: 对于绝热隔热保温涂料而言,(固体)热传导主要由绝热材料中的固体部分来完成,热对流则主要由绝热材料中的空气来完成,热辐射的传递不需要任何介质。因此要实现超级绝热材料的目的,一是要使材料的体积密度在保持足够的机械强度的同时,其体积密度要极端的小,二是要将空气的对流减弱到极限,三是要通过近于无穷多的界面和通过材料的改性使热辐射经发射、散射和吸收而降到最低。 北京志盛威华研究人员多年的研究结果表明,当材料中的气孔直径小于一定尺寸时,气孔内的空气分子则失去了自由流动的能力,而是相对地附着在气孔壁上,这时材料处于近似于真空状态。同时由于材料内部含有极多的发射界面与散射微粒,再加上在热辐射吸收方面对材料进行改性,保证了陶瓷绝热隔热保温涂料不论在高温、常温及低温下有良好的绝热效果。 二、陶瓷绝热防腐涂料的协同绝热理论: 陶瓷绝热隔热保温涂料涉及到真空绝热技术、红外反射技术、热力学技术以及散射技术、防腐技术等,它是众多绝热技术协同作用的结果。其理论应属多学科边缘技术的结合,在此称为协同绝热理论概括如下: 1、真空隔热(保温)原理:真空隔热(保温)一般情况下系用以下方案:1)采用高真空双层壁。2)采用高真空的型腔,型腔内有一定数量的中间抛光薄片作为反射屏,它能很好的反射光线,以防止热量辐射传递。3)有粉末状的物质或者轻质纤维的型腔,这类粉末或者轻质纤维有良好的隔热保温特性。无论什么情况,任何一种隔热保温方法,包括三种热量: q=q壳-q气+q辐 q壳-隔热保温材料壳体传递的热量。隔热保温材料壳体传递热量(q壳)取决于壳体的结构。 q气-隔热保温材料之间填充的气体传导热量和气体对流所传递的热量。 q辐-辐射传热。如果要高真空隔热保温,那么在不同温度(to和tx)两个表面所建立隔热保温壳体内,需建立10-1pa左右的真空,这几乎完全排除了气体传递热量(q气)。 气体传递的热量取决于壳体内气体分子的特性它服从努森准则。 kn=1/d>1 式中1-分子平均自由度,d-系统的特性尺寸 志盛威华隔热保温涂料研发人员发现,如果当科技水品发展到一定的阶段,能把真空隔热保温材料壳体内真空度达到10-1pa,气体分子数量大大减少,分子的自由行程可以达几百厘米,即分子的自由度很大,即kn远大于1,分子相互碰撞几率很小,因此分子热传递大大减弱。但当壳体内真空度达到10-2~10-3pa,假如真空隔热保温壳体内填充有粉末状片状填料,系统的隔热保温能力可增加几倍,这是因为在真空隔热保温壳体内填充粉末片状填料可以减少(或消除)辐射热传递。 2、绝热隔热保温涂料红外辐射的基本原理:从热辐射观点来看,外层空间可以近似看成一个绝对温度为零的黑体,如果在大气外设一个绝对温度为t=300k的黑体,则它将被逐渐地冷却下来。根据斯蒂分-波尔兹曼定律,可以近似算出它辐射到外层空间的单位面积能量w: w=at-4=5.7×10-8(300)-4=450w/m2 这个数值是非常高的致冷量。但如果把此黑体放到地面上,则其致冷效果将急剧下降,这主要是由于大气阻挡部分红外辐射到达外层空间。在波长为8~13.5μm的区域内,水蒸汽和二氧化碳的吸收能力也较弱,这样就使大气层对8~13.5μm的红外辐射有很高的透过能力。在红外气象学中,称这个透过率很高的波段为“红外窗口”。通过这个“窗口”,地面上的辐射体可以直接辐射到外层空间。辐射体的辐射效果直接与它的辐射性能有关。假设辐射体表面涂有一层特殊的光谱选择性涂层,其特性为:在8~13.5μm波段内,此涂层的红外辐射性能等同于黑体,而在此“窗口”外它是理想的反射体,即不发射(因此也不吸收)辐射能。这种理想的光谱选择涂层的辐射特性可用图来表示。 陶瓷绝热隔热保温涂料做为保冷使用时,我们为它设计的面漆辐射性能就类似于理想的选择性辐射体。下图是陶瓷绝热隔热保温涂料面漆的反射率和吸收率随波长的变化关系。曲线表明,在8~13.5μm波段内,这种材料具有很强的吸收能力(根据基尔霍夫定律,其辐射能力也很强),但在其它波段,它却有很高的反射能力,因此,它有着类似于理想黑体的辐射特性。 根据红外涂料光吸收辐射原理,吸收系数a由涂料成分决定。a值增加,则涂层的光谱发射率β、γ也增大。当调整涂料组成时,若它的吸收系数变大,将使涂料发射率β、γ增加。所以要使涂料在8~13.5μm波段内有高的发射率,必须加入此波段范围具有高峰吸收值的物质,增强辐射体表面在此范围的辐射能力。另外,降低散射系数s数值(将涂料中的发射基料研磨成微小颗粒),也有利于提高涂料的发射率。 北京志盛威华化工有限公司通过几十名技术研发人员的不断技术革新,实验室的上万次试验,使用现场的应用结果不断反馈,陶瓷隔热保温涂料隔热保温技术又有重大突破,隔热保温效果接近隔热保温极限。 第一代zs-1陶瓷耐高温隔热保温涂料导系数阻值是0.03w/m.k,采用志盛威华特制高温溶液,耐温可以达到1800℃,隔热保温抑制效率可达90%左右,在第一代涂料原有的性能基础上,这次技术革新主要是通过三个方面进行技术创新,1、在陶瓷微珠陶瓷材料里加入天然的活性耐高温材料,这种材料能持续释放带相同电荷的离子。2、陶瓷微珠壁不在是实体,而是一定量的空心体,也就是陶瓷壁里有一定的静态的空气层。3、陶瓷微珠壁厚薄更加均匀。 zs-1陶瓷耐高温隔热保温涂料通过以上的技术研发革新,这样耐高温隔热保温涂料里微珠里,以及微珠和微珠之间不在是简单的静态空气或是真空,而是静态空气或是真空中存在着大量带有相同电荷的离子,带有相同电荷的离子发射的电磁波能有效的屏蔽热能的电磁波,更能有限的阻止热能的传导,完全消除传导自有层,陶瓷微珠壁上的空心层和微珠壁厚度均匀,能有效减低涂料导热系数阻值,耐压强度、膨胀系数更加均匀一致,第二代zs-1陶瓷耐高温隔热保温效果在第一代隔热保温的基础上再提高10%以上。 技术创新后的北京志盛威华化工有限公司陶瓷耐高温隔热保温涂料,隔热保温性能更加突出,隔热保温性接近隔热保温极限。 三、陶瓷绝热隔热保温涂料的市场展望: 具有优良性能的陶瓷绝热隔热保温涂料无论在工业、电力、军事、民用还是在宇航领域有着迫切的市场。仅以民用方面为例,随着陶瓷绝热隔热保温涂料生产技术的不断成熟与生产规模的不断扩大、其生产成本将有较大的下降。若该材料应用于家庭及单位的太阳能热水器的储水箱、管道和集热器,将比现有的太阳能热水器的集热效率提高近一倍,而热损失下降到现有水平的30%以下。北京志盛威华化工有限公司的耐高温隔热保温涂料是随着世界整体技术的发展而形成的新观念、新技术、新产品,其将传统绝热工程的三步曲合并为一,随着该技术的不断成熟和生产成本的不断下降将带来绝热材料与绝热领域的一场革命。我国绝热材料生产企业只有不断创新、开发与掌握世界最先进的绝热材料生产技术与理论,才能在未来的全球化经济竞争中取得主动权。 (【cailiao】更新:2012/12/11 0:03:59)
|